If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4+5x=0
a = 2; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·2·(-4)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{57}}{2*2}=\frac{-5-\sqrt{57}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{57}}{2*2}=\frac{-5+\sqrt{57}}{4} $
| 3x+6=7(x+3)-3+5 | | -4+2(x+6)=2(-3x-4) | | 15(6x-5)=2x-9 | | 13x-146=10x-2+15x | | 3x+6=24x-9 | | 8+3x=5x+8 | | 4(2r-17)=5(3r-8)=0 | | 2y^2+5y=-7y | | 8+3=5x+8 | | 3/7x=36 | | 3x+6=8(x+9)-9+5 | | x(75)=±30 | | (x/18)-(1/6)=12 | | |5x-7|=|3x+11| | | X+10x+25x=550 | | 3x+6=3(17-x)+9 | | 5x-9=4x-4 | | 5/2x+2x+7-2=5 | | 150(y)=±30 | | (x)/(4)+(11)/(12)=(1)/(2)-(1)/(6x) | | 15a^2-16a-15=0 | | -2x+30=-8x | | (0.66)^k=9 | | 36=-6(2x-14) | | (V-3/v+5)=-12/7 | | 3y/2+y/10=32/5 | | -1+19w=1w+23 | | 9x+72=4x112 | | -7y+44=12y+11 | | 5/16t=-45 | | (x/4)+(11/12)=(1/2)-(1/6x) | | 4x-x^2-1=0 |